Representing continuous t-norms in quantum computation with mixed states
نویسندگان
چکیده
A model of quantum computation is discussed in (Aharanov et al 1997 Proc. 13th Annual ACM Symp. on Theory of Computation, STOC pp 20–30) and (Tarasov 2002 J. Phys. A: Math. Gen. 35 5207–35) in which quantum gates are represented by quantum operations acting on mixed states. It allows one to use a quantum computational model in which connectives of a four-valued logic can be realized as quantum gates. In this model, we give a representation of certain functions, known as t-norms (Menger 1942 Proc. Natl Acad. Sci. USA 37 57–60), that generalize the triangle inequality for the probability distributionvalued metrics. As a consequence an interpretation of the standard operations associated with the basic fuzzy logic (Hájek 1998 Metamathematics of Fuzzy Logic (Trends in Logic vol 4) (Dordrecht: Kluwer)) is provided in the frame of quantum computation. PACS numbers: 03.67.Lx, 02.10.−v (Some figures in this article are in colour only in the electronic version)
منابع مشابه
LP problems constrained with D-FRIs
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Dombi family of t-norms is considered as fuzzy composition. Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of ...
متن کاملLinear programming on SS-fuzzy inequality constrained problems
In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole spectrum of t-norms when the parameter is changed...
متن کاملOn the optimization of Dombi non-linear programming
Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of the parameter. This family of t-norms covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. In this paper, we study a nonlinear optimization problem in which the constraints are defined as fuzzy relational equations (FRE) with the Dombi...
متن کاملLinear optimization on the intersection of two fuzzy relational inequalities defined with Yager family of t-norms
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Yager family of t-norms is considered as fuzzy composition. Yager family of t-norms is a parametric family of continuous nilpotent t-norms which is also one of the most frequently appli...
متن کاملLinear optimization on Hamacher-fuzzy relational inequalities
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Hamacher family of t-norms is considered as fuzzy composition. Hamacher family of t-norms is a parametric family of continuous strict t-norms, whose members are decreasing functions of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015